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ABSTRACT A comprehensive study of a minimized component pencil shaped (PS) 9-level inverter
constructed with just two DC supplies is presented in this research. Many of the suggested low component
multilevel inverters (MLIs) use DC supplies that are not being used appropriately along with additional
conducting switches. Since this proposed MLI has a reduced quantity of power electronic switches, it is
more efficient. The architecture may be expanded to a modular higher voltage level inverter, which uses
less DC supplies and uses them correctly without the need of an extra H-bridge circuit. To determine their
optimum capabilities, the proposed inverter parameters’ simplified formulas are constructed. Furthermore,
the extended model of the proposed architecture is used to generate an optimum PSMLI design for
lowering the total standing voltage (TSV) of the inverter. To demonstrate its advantages over recent MLIs of
similar types, comparison studies are given to justify the proposed inverter. Through proper simulation and
laboratory experiment, the MLI obtained a higher efficiency of 95.54%. On the other hand, the optimized
17-level version of PSMLI obtained total harmonic distortions (THD) of only 5.15% which successfully
attained IEEE 519 standard performance.

INDEX TERMS Multilevel inverter, power electronics, switched capacitor, voltage boost, nearest level
control.

I. INTRODUCTION wind turbines [5], solar systems [6], and HVDC for

Multilevel inverters offer a consistent and precise output
voltage. In the realm of power electronics, researchers find
MLIs that have different shapes to be very interesting.
Recently, a large diversity of configurations has developed
in power systems, with variety of applications. In medium
and high-power systems, including power grid, electrical
vehicles [1], drive systems [2], active power filters [3], [4],
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transmission lines [7], MLIs are the preferred inverter above
standard two-level inverters. Since MLIs generate multilayer
voltage, they feature minimal harmonic profile and ripple-
free output voltage. The cascade connection capabilities of
MLIs confirms that the switches have minimal stress and
electromagnetic interference, resulting in high efficacy for the
system.

Multilevel inverters come in a variety of modules, for
instance, Neutral Point Clamped (NPC), Flying Capacitor
(FC), and Cascade H-bridge (CHB). Large capacitor voltage
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dips are observed in FC and NPC, resulting in imbalanced
DC links and high voltage stress on the switches. CHB
topologies, on the other hand, are suggested by researchers as
a way to design configurations with fewer components. The
fundamental disadvantage of typical CHB-MLIs is that they
need a large number of separate DC sources and conductor
switches to generate multilevel voltage. According to [8],
MLIs can be divided into three different types depending on
the structure and the magnitude of the DC supplies: which are
asymmetrical, symmetrical, and hybrid MLIs. In the unipolar
MLI topologies proposed in [9]-[12], H-bridge circuits with
polarity generating capacity are necessary to acquire negative
and positive voltage levels at the output provided by the
level generating (LG) section. Although the LG section
generated voltage become approximately double by the
H-bridge, the power electronic switches of the H-bridge need
to endure the highest voltage stress equivalent to the total
DC-link voltage [13]. Switched-battery boost (SBB) MLI as
reported in [14] reduces the switch count by using two DC
supplies with one diode and a switch to generate just two
voltage levels. However, to generate higher voltages, this MLI
needs a greater number of DC supplies, and the levels can
only be attained by combining the multiple sources. As an
alternative, crisscross switched based inverters are proposed
to generate greater voltage with fewer components The MLI
using crisscross switched configuration as shown in [15]
included the semi-half-bridge cell that employed a moderate
number of DC sources and semiconductor switches to achieve
a certain voltage level. Although these MLIs employ minimal
DC sources, an extra H-bridge circuit is utilized that has
high voltage stress and therefore, raised their total standing
voltage (TSV).

Bipolar configurations are more appealing because of their
intrinsic ability to create negative voltage stages without
H-bridge circuit, which helps to reduce high TSV. A square
shaped MLI module was proposed in [16] utilizing 4 DC
sources and 12 switches to produce 17 voltage levels. Even
though the MLI’s structure has been established utilizing
low rated switches, it uses asymmetrical DC sources. Thus,
the TSV of this MLI is very high. Because of using 4 DC
sources, it will require 4 transformers to provide galvanic
isolation, that may increase the overall cost of the system
significantly. Moreover, because of using asymmetric DC
sources, it needs precise voltage balancing to maintain the
constant voltage ratio among the DC sources which can
induce control complexity. In comparison, the proposed
MLI only used 2 symmetric DC sources and 10 switches
to produce 9-level voltage. Thus, it has overcome all the
issues associated with the MLI of [16]. A similar envelope
type (E-type) topology can be observed in [17] where 10
switches and again 4 asymmetrical DC sources are used
to generate 13-level. This topology has similar issues like
the MLI in [16]. The configuration is redesigned by putting
two capacitors in place of two DC supplies in the kite
shaped MLI [18]. This MLI can produce 13-level voltage
utilizing 2 more switches than the proposed MLI. However, it
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again utilized asymmetrical DC sources which has increased
its TSV and induced voltage balancing issues. In [19],
an inverter with 5 symmetric DC supplies and bidirectional
switches is presented that couples two generic T-type inverter
sub-modules with 4 cross connected switches and 4 DC
supplies. Although this configuration solved the issue of
asymmetrical DC sources of previous configurations, it still
requires higher number of DC supplies. Additionally, this
device has comparatively high TSV than the proposed MLI
because of using the cross connected switches which bear the
entire voltage stress of each T-type sub module. Ref [20], [21]
present another two symmetrical configuration that makes
extensive use of DC sources while prohibiting the use of
asymmetric DC supplies. However, the cost of these devices
is elevated because of using high number of isolated DC
sources.

By implementing switched capacitors instead of DC
sources, a new group of MLIs known as switched capacitor
MLI (SCMLI) aims to reduce the number of components
while also lowering the switching stress. This particular
MLI group uses a blend of DC supplies and capacitors
to produce sinusoidal voltage. Furthermore, higher voltage
steps or voltage boosting can be obtained using the same
DC sources. According to [22]-[27], SCMLI designs aim to
substitute several DC supplies with capacitors. However, the
increased number of switching devices are required in these
MLIs to maintain capacitor voltages complicating the circuit
configuration.

The study presented a novel MLI module using a clever
combination of DC source, capacitors and switches. With
the goal of achieving maximum voltage steps, switching
devices and DC sources are implemented with enhanced
power quality and cost-effectiveness in mind. Using only
2 switched capacitors and 2 DC supplies, this module can
generate 9 levels output. To synthesize negative output levels,
the suggested module doesn’t need any extra circuit. As a
result, the TSV of the MLI is greatly reduced.

The principal contributions of the manuscript can be stated
as follows:

1. The proposed PSMLI module use reduced number of
power electronic components compare to other MLIs
available in the recent literatures.

2. Using its intelligent switching arrangement and current
paths, it can generate negative voltage inherently
without requiring any additional power components.
Thus, TSV of the PSMLI has significantly decreased.

3. The proposed MLI requires fewer switching transitions
to generate multilevel voltage because of utilizing a
smart combination of switches, switched capacitors
and DC-links.

4. The proposed MLI does not require any additional
power components to balance the capacitor voltages.
Thus, it has further optimized and simplified the
structure making it cost effective.

The entire structure of manuscript is organized by dividing

it into seven major sections. Section 2 discusses the state of
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FIGURE 1. Schematic diagram of the proposed MLI.

the art, features, modularity, TSV, efficiency and power losses
of PSMLI. The third section demonstrates the optimized
structure of PSMLI and its advantages. Following that the
next section presents a comprehensive comparative analysis
with other MLIs. Section 5 presents results and discussions
which includes simulation and experimental results. Finally,
section 6 discusses the conclusions of the manuscript.

Il. PSMLI AND ITS CONFIGURATION

The proposed module is built using a proper configuration of
power electronic components to achieve maximum number
of voltage levels using the DC sources and switched
capacitors.

This topology uses the basic operation of switched
capacitors to further increase and boost the voltage levels.
Another challenge in this type of MLI would be to maintain
the voltage of the capacitors without needing any additional
circuit.

A. CONFIGURATION AND WORKING PRINCIPLE OF PSMLI
The pencil shaped MLI (PSMLI) is build following the
edifice of a pencil as depicted in Fig. 1. It has 3 principal
segments which are represented using 3 color schemes. The
first part is called the head (brown color), the 2" segment is
referred as the body (yellow color) and eraser is the final part
(pink color).

The first section includes 2 unidirectional switches
(S1, S2,). These serve as directional switches and the
module’s current path is determined by them. PSMLI, for
example, will only produce positive voltage levels, if Sy is
switched on. However, when S, is turned on, it can typically
generate negative voltage levels. The body part consists of
4 unidirectional switches (53, S4, S¢, S7) and 1 bidirectional
switch (S5), 2 DC source (Vpci, Vbpcz) and 2 switched
capacitors (Vc1, V). The switches S3 and Sy is utilized
to avoid the short-circuit of capacitor V¢ and Vo. The
body part performs as the channel between the head and the
eraser. The reverse current is blocked by the bidirectional
switch Ss. The bottom part of PSMLI is an eraser shaped
part that consists of 2 unidirectional switches (Sg, Si0)
and 1 bidirectional switch (Sy). It structurally looks like a
T-type inverter and thus can generate negative levels without
needing additional H-bridge unit. The MLI can produce
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FIGURE 2. PSMLI’s current path to produce 9-level voltage.
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FIGURE 3. Operation of PSMLI using NLC technique.

9 levels voltage (£4 levels, and 0 level) using the DC-links.
PSMLI’s power switches are cleverly implemented so that
the capacitors and DC supplies are coupled through different
current channels, requiring no additional circuit to balance
out the voltage of the capacitors.

Table 1 shows the switching pattern while Fig. 2 illustrates
the current routes of PSMLI. In addition, Fig. 3 shows the
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FIGURE 4. TSV of PSMLI’s each switch at various voltage levels.

TABLE 1. PSMLI’s switching pattern.

Output Pattern of switching
VAB
4E
3E
2F
E
+Vea 0(i)
+Ve 0(ii)
-E
2FE
3E
4E
Number of turn
on in each cycle

gl
g
s

+Levels

- Levels

—_——_—_—o—~ocococoWn

S5
1
1
0
0
0
1
1
1
1
1

CoOoc oo~ == — —
—_———o0cococococo?n
N OCo o ———=——0ooh
w coocoO~R—~O0oO0—~r—N
—cococooco—~oco~~—~n
N ocoo—~o—~oco~or—h
x o—~oco—~oco~—~o—~okhk
—coco~0c0co0coo

—_
W

2

,_
~
w

behave of the power switching components of the proposed
PSMLI using the nearest level control (NLC) technique.
It can be observed that zero voltage level is used to charge
the DC capacitors. Table 1 also shows the number of times
each switch turns on during one complete cycle of operation.
The switching sequences of Table 1 confirm that switches
(81, S2, 83, S4, S5, Se, S10) are turning with low frequency
which has significantly reduced the TSV of the PSMLI. For
each voltage level of PSMLI, a graphical depiction of the
TSV of each switch for every voltage level is presented
in Fig. 4. Thus, the TSV of the PSMLI is calculated to
be 16 Vpc.

B. BMODULARITY OF SYMMETRIC MODULE

The proposed PSMLIs flexibility is verified in this section by
showcasing its ability to generate higher number of voltage
levels. This is done by extending the structure of the 9-level
PSMLI inverter which is depicted in Fig. 5. Here, the ratio
between the DC sources and the capacitors is unity. The
extended structure is developed by extending the body part
of PSMLI and which is then connected with another similar
structure using cascaded connection as depicted in Fig. 5.
The polarity is converted using 2 conduit switches which
are placed between the main body and extended body of the
PSMLI. These 2 switches will also function as the polarity
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FIGURE 5. Modular PSMLI unit with xth and zth modules.

converter similar to the directional switches used in the head
section of the PSMLI. The cascaded connection is established
with z" module to double the voltage producing ability.
The x™ sub-modules incorporate 6 unidirectional switches,
1 bidirectional switch, 2 switched capacitors, and 2 DC
sources. For a specific number of x™ module and z™" module,
the number of voltage sources (Npc), number of capacitors
(N¢), number of power switches (Np), and the voltage levels
(Nvy), TSV (Nrsy) can be determined as:

Npc = Nc =2(z+x+1) @))
Np = 43z +2x +3) (2
Ny = 8x+8z+9 3)

Nrsy = 16x +21(z+ 1) “4)

Considering Fig. 5 and at constant z, for a specific number
of DC sources, the other parameters of PSMLI can be
determined as:

Npc = N¢c =k (5)
Np =4k +1) (6)
Ny = 4k + 1 7

Nrsy =8k +5 (8)

Since power switches of the symmetrical cascaded z"
module have same TSV as the original module (n = 1), the
TSV can be realized by:

TSVy=1 =TSV, =TSV, )

Considering a constant number of cascaded modules, the
voltage stress of the switches of the symmetrical submodules
can be determined by:

VS(7X*6,Z) = VS(7X75,1) = VS(7x72,z) =2Vpc (10)
VS(7X—3,:) = VS(7);—1,Z) = 4VDC (11)
Vsai-a0 = Vsauo = Vb (12)
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FIGURE 6. The characteristics of extended asymmetrical PSMLI module in
terms of voltage level (Ny).

C. MODULARITY OF ASYMMETRIC MODULE

Although asymmetrical MLI structures induces superfluous
voltage stress and imbalance into the system, it is one of
the simplest methods of boosting voltage levels without
introducing any structural complexity or usage of higher
number of power electric components. The proposed PSMLI
can also be extended using asymmetrical module. In order
to maximize the voltage level, the second submodule or of
the PSMLI is designed with voltage sources with tertiary
voltage capability (i.e., Vpca,00 = Vbce,00 = 3E) or in
other words, a voltage ratio of 1:3 is maintained between
the original module and the extended module. Thus, with
the addition of only 8 switches the extended PSMLI would
have the ability to generate 33 voltage levels. For synthesizing
similar number of voltage levels, a symmetrical PSMLI
would require 3 extra submodules (i.e., x = 3) or 36 power
switches according to (2) and (6). However, the TSV of the
entire PSMLI would increase to 69Vpc. The relation between
the voltage levels and voltage stress are shown in Fig. 6 for
further comprehension. Similar to the symmetrical extension
of PSMLI, the equations for the asymmetrical extension can
be realized by:

Ny =38x+8z+9) (13)
Nrsy = 48x + 637+ 21 (14)

Considering a constant number of cascaded modules, the
voltage stress of the switches of the asymmetrical submodules
can be determined by:

VS(7x76,z) = VS(7X75.1) = VS(7x—2,z) =6Vpc (15)
Vsasy = VSarr = 12Vbe (16)
Vsgi-a0 = Vsauo = 3Vbe (17

D. EFFICIENCY AND LOSS PROFILE OF PSMLI

The suggested MLI configuration’s efficiency and power
loss are assessed using the PLECS software. The power
loss evaluation on all heat sinks is done in the steady-state
condition maintaining an ambient temperature of 25°C. Heat
is distributed evenly across the heat sinks. By using the data
sheets, thermal profiles of diodes and IGBTs are computed
automatically by PLECS software. The power loss of the
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PSMLI is predicted to be 900W under nominal working
conditions. The efficiency is calculated by taking into account
the conduction and switching losses of switching devices,
as well as the power losses of switched capacitors. The
capacitor generated losses are calculated as follows:

Peap = Pp + Pr (18)
Pp = (0.1upc)? x 7 x f x C x tan 8y (19)
Pr = I’Rs (20)

The resistive and dielectric losses are represented by
Pr and Pp, respectively. Furthermore, the maximum DC
voltage of a capacitor is denoted by upc, f represents the
fundamental frequency, which is 50 Hz, C symbolizes the
capacitance, dissipation factor is depicted by tan §p that is
0.15. Utilizing (18) — (20), the capacitor losses are 11.8 W.
The diodes’ switching and conduction losses at steady state
are 0.012 W and 0.871 W, respectively, while the total IGBTSs’
switching, and conduction losses are 0.193 W and 9.187 W.
The overall efficiency is 94.5%, with a total power loss of
22.063 W.

E. VOLTAGE RIPPLE CALCULATION OF PSMLI
For a high-quality AC output, a constant total DC-link voltage
is necessary. In order to avoid a significant amount of voltage
ripple, a switchable capacitor must have a voltage ripple of
no more than 5%. The following calculation can be used to
calculate the voltage ripples of both capacitors:

Oof
1
AVe = — / ip dwt 21
wC
9()"

Using PSMLI’s basic output current, this may be figured
out further as follows:

Oof
I
AVe = 2B / sin (wf — @) dwt (22)
wC
90)1

Here, ¢ indicates the angular shift between voltage and
current, o indicates the angular frequency of the multilevel
AC voltage, ripple voltage end angle is indicated by 6,4,
ripple voltage starting angle is indicated by 6,,, capacitance
of capacitors is indicated by C. Using the following
equations, the ripple angle can be calculated as:

Nyg + 0.5 i|

Opn = sin~! |:
O xm(N¢c +1)
Ooff = T — Oon (24)

(23)

where, the quality factor is indicated by Q and modulation
index is indicated by m. The capacitor voltage ripple level
is indicated by Nyg. Both capacitors’ voltage ripples are
computed, and the computed value is 3.23 V. This determines
that low ripples exist in the capacitor voltage, and the
proposed MLI can be implemented effectively.
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ill. OPTIMIZED PSMLI TOPOLOGY

By choosing an optimum structure for each module, the TSV
of the extended symmetrical PSMLI can be reduced. Here, the
asymmetric PSMLI is not considered because of drawbacks
associated with those modules such as high TSV and voltage
imbalance which can cause serious problems specially in
renewable energy applications. A specific combination of
x (submodules) and z (cascaded modules) must be chosen
to develop the proposed PSMLI’s extended structure having
minimum voltage stress. This optimum configuration also
ensures that a reduced number of power electric components
are fully utilized. Thus, the voltage levels (Ny) and corre-
sponding TSV for two alternative configurations of PSMLI
under different values of x and z can be plotted to find the
optimal configuration.

A. CONFIGURATION 1

The PSMLI can be designed with any number of cascaded
or z" modules, each having one cross connected submodule
(x = 1). Under this configuration with the number of voltage
levels that can be produced by the proposed inverter is found
using (3) which is 82+ 17. On the other hand, the TSV of the
whole inverter can be determined by utilizing (4).

B. CONFIGURATION 2

The PSMLI can be designed with only cascaded module (z)
and several submodules (x > 1) in this configuration. Under
these circumstances (configuration-1 and configuration-2),
the number of voltage levels (Ny) and TSV of the novel MLI
can be again determined using (3) and (4) respectively. The
graphical representation of Ny vs TSV is illustrated Fig. 7.
It is visible from Fig. 7 that in terms of TSV configuration-2
is more feasible than configuration-1. The higher THD of
configuration-1 is due to the utilization of 4 extra switches
while adding several cascaded modules. Thus, the overall cost
of configuration-1 will be much higher than configuration-
2 since switches with high voltage ratings are highly
expensive [28]. However, in terms of simplicity and switching
control, configuration-1 is preferable since it can be built with
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TABLE 2. Comparative analysis between MLIs.

MLIs Noc  No N Ny TSV B;’;’:tt(‘)?g br?dge
NPC 1 4n+3) n+3 2n+7 4(n+3) 0 No
FC 1 4n+3) n+3 2n+7 4(n+3) 0 No
CHB n+3 4m+3) n+3 2n+7 4@n+3) 0 Yes
[9] 2n+1)2Bn+5)2n+1)4n+5 1l4(n+1) 0 Yes
[10] n+3 2Q2n+5) n+3 2n+7 4(4n+1) 0 Yes
[11] n+t3 5n+14 n+3 2n+7 25n+6 0 Yes
[12] n+3 22n+3) n+3 2n+7 16(ntl) 0 Yes
[13] n+3 4m+3) 2m+1)4n+5 8(2n+3) 0 Yes
[14] n+3 4m+2) n+3 2n+7 2(1ln+1) 0 Yes
[15] n+3 2m+6) n+3 2n+7 6(n+6) 0 Yes
[16] 2n+1) Sn+7 2m+1)4n+5 13n+19 0 No
[17] n+3 3n+7 n+3 2n+7 12n+7 0 No
[18] 2n 5n+9 2m+1)4n+5 10(n+1) 2 No
[19] n+4 2n+10 n+4 2n+9 2(4n+9) 0 No
[20] n+3 4m+2) n+3 2n+7 10(n+2) 0 No
[22] 1 12n 3n 6n+1 16n 3 No
[23] 1 16n 3n 6n+1 16n 3 No
[24] 1 14n 3n 6n+1 22n 4 No
[25] 1 10n 3n 6n+1 32n 3 Yes
[26] 1 13n 3n 6n+1 23n 4 Yes
[27] 1 12n 3n 6n+1 22n 3 No
PSMLI 2n 4@2n+1) 4n  8n+1 8(ntl) 2 No

similar cascaded modules and same switching sequences.
In terms of power switches, configuration-2 is more cost-
effective since it requires a smaller number of power
switches for generating higher voltage levels. Configuration-
2 can generate 81-level voltage utilizing 84 power switches
while configuration-1 requires 112 power switches for
generating same voltage level. Considering all these advan-
tageous aspects, this manuscript gives more emphasis on
configuration 2.

IV. COMPARATIVE ANALYSIS

In order to justify PSMLI’s superiority in terms of usage of
lesser number power electronic components, a comprehen-
sive comparative analysis is presented in this section with
classical and other recently proposed MLIs. For comparison,
the symmetrical version is selected for each MLI.

Configuration-2 of PSMLI is selected for this analy-
sis since it is more optimized than configuration-1. The
parameters that are chosen to conduct this comparison:
number of DC sources (Npc), number of power switches
(Np), number of voltage levels (Ny), maximum voltage
(Nvimax), TSV, boosting factor and requirement of H-bridge
circuit. The generalized equations of the MLIs are shown
in Table 2.

In comparison with the classical MLIs it can be observed
that the proposed MLI has used low number of power
switches. The classical NPC inverters require a smaller
number of DC sources compared to PSMLI. However,
it requires huge number of switches [refer to Fig. 8(a)l,
clamping diodes and capacitors to generate greater voltage
levels. Thus, it has serious voltage imbalance issues which
requires the application of complex modulation techniques

111315



IEEE Access

S.T. Meraj et al.: PS 9-Level MLI With Voltage Boosting Ability: Configuration and Experimental Investigation

150
[23] [24]
= [NPC.FC,CHB] ~
Z g
E 100 - // z [CHB,9-17,19,20] %
= .. @ ~
£ 3 Z
2 2 =
3
s S0 sy & %
o =]
n‘ [
121 15) 117 PSMLI
0 L : ; 0 * : , ; -
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Voltage Levels (Vy) Voltage Levels (Vy) Voltage Levels (Vy)
(a) (©

FIGURE 8. Comparative analysis among different MLIs in terms of: (a) switches (Np), (b) DC sources (Np¢), (c) TSV (Nzsy)-

to be resolved. FC MLIs also requires small number of DC
sources but has the characteristics of using large number
of capacitors and power switches as shown in Fig. 8(a)
which can greatly hamper the efficiency of the MLI by
inducing capacitor losses in the system. CHB MLI requires
large number of switches and DC sources compare to the
proposed MLI as illustrated in Fig. 8(a) and 8(b) respectively.
Symmetric CCMLI [15] requires 14 switches and 5 DC
sources to generate 9-level output which is more than the
proposed MLI. In addition, the TSV of the CCMLI is 42Vp¢
as shown in Fig. 8(c) which is substantially greater than
PSMLI.

A similar attribute can be observed in the MLIs proposed
in [16]-[20] where, large number of switches and DC sources
are required compared to PSMLI. The proposed MLI in [17],
[19] require same number of switches as PSMLI for the
basic configuration (n = 1). However, as the voltage level
increases, they require a greater number of DC sources and
switches evidential from Fig. 7(c). On the other hand, the
MLIs proposed in [16]-[20], [22]-[24], [27] avoided the use
of H-bridge. However, they require high number of power
switches.

The proposed MLI is also compared with similar class of
switched capacitors MLIs (SCMLI) proposed in [22]-[27].
It can be observed from Fig. 8(b) that although these MLIs
utilized a single DC source, they tend to have higher TSV
[refer to Fig. 8(c)] and uses increased number of switching
devices [refer to Fig. 8(a)] compared to the proposed MLI.

It is further noticeable that the boosting factor is only
present for the MLIs that are comprised of switched
capacitors units. This provides an added advantage to these
MLIs since they do not require high number of isolated
DC sources and transformers. The highest boosting factor is
provided by the MLIs proposed in [24] and [26] as shown
in Table 2. Both of these modules used single DC source
to produce 9-level output at n = 1. On the contrary, the
SCMLIs proposed in [22], [23], [25], and [27] have a triple
boosting ability. Although, these MLIs have higher boosting
ability than the proposed MLI, they have utilized high number
of power switches and also induced high TSV which is
evident from Fig. 8(a) and Fig. 8(c), respectively. Thus, it can
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be stated that the proposed PSMLI has created a balance
among the utilization of power electronic components
such as switch and DC sources, voltage boosting ability,
and TSV.

PSMLI’s superiority is further validated by comparing
it with other MLIs in terms power losses and efficiencies.
The power losses and efficiencies are obtained using PLECS
software. The MLIs are built with similar model of power
electronic switches, DC sources, diodes and capacitors to
justify the comparison. Furthermore, a maximum DC-link
voltage of 200 V is considered for the MLIs with an
operating power of 900 W. The efficiencies (n) of each
MLI are determined by considering three types of losses
which are conduction losses (Pco,), switching losses (Pyyy)
and capacitor losses (Pqp). The power loss data obtained
from PLECS software is then added to determine the total
power losses (Pjozq1) of each MLI as demonstrated in Table 3.
It can be observed from Table 3 that PSMLI’s efficiency is
less than the MLIs proposed in [16]-[20]. It is due to the
fact that these MLIs does not incorporates any capacitors
and hence, there is no capacitor loss. Nevertheless, all
these MLIs use several DC sources which can massively
increase their building costs. It should be addressed that
the SCMLIs’ efficiency is calculated for generating 7-level
voltage. Yet, the proposed MLI has higher efficiency than all
SCMLIs.

V. RESULTS AND DISCUSSIONS

The operation of the proposed PSMLI is validated in this
section by presenting the simulation and experimental results.
Similar parameter settings are selected for both simulation
and experimental setup to justify and compare the results.

A. SIMULATION RESULTS

MATLAB Simulink is used to simulate the proposed PSMLI.
The 9-levels (n = 1) output voltage of PSMLI is illustrated
in Fig. 9(a) using the NLC modulation technique. Here,
each voltage level is 10 V to create a 50 Hz multilevel
staircase output voltage of 40 V. The harmonic spectrum
of the 9-levels output voltage is depicted in Fig. 9(b).
Furthermore, the 17-levels (n = 2) output voltage and
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TABLE 3. Power loss and efficiency comparison.

TABLE 4. Power loss and efficiency comparison.

MLIs Py (W) Py, (W) Py (W) P (W) n (%) Components Model Specifications
NPC 9.49 0.12 23.66 33.27 91.68 IGBT switches IGB30H60H3 600 V,30 A
FC 8.43 0.14 73.12 81.69 79.58 Gate drivers IC SN7411C04N 10-35V,15A
CHB 8.67 0.14 0 8.81 97.83 Diodes MURI1560G 600V, 15 A
[9] 18.45 0.22 0 18.67 95.33 Capacitors ESM1201VSN272MAS50S 200V, 2700 pF
[10] 22.40 0.15 0 22.55 94.36 Frequency - 50 Hz
[11] 38.80 0.28 0 39.08 90.23 Load value R-L 40 Q-5 mH
[12] 21.08 0.07 0 21.15 94.71 Load variation R 100 Q- 160 Q
[13] 42.16 0.30 0 42.46 89.39 Non-linear load KBPC2510 1-phase, 25 A, 1kV
[14] 18.97 0.09 0 19.06 95.24 DC-link voltages CSI3003X3 20V
[15] 19.37 0.28 0 19.65 95.09 Harmonics
[16] 12.65 0.18 0 12.83 96.79 Analyzer Fluke 43B -
[17] 6.26 0.15 0 6.41 98.40 DSP TMS320F28335 150 MHz
[18] 922 0.13 11.83 2118 94.70 Components Model Specifications
[19] 5.93 0.08 0 6.01 98.49
[20] 11.86 0.17 0 12.03 96.98
[22] 6.32 0.09 11.80 18.21 95.45
[23] 8.43 0.12 11.79 20.34 94.92
[24] 10.14 0.14 11.81 22.09 94.48
[25] 10.54 0.30 11.80 22.64 94.34
[26] 9.85 0.14 29.48 3947 90.13
PSMLI 9.20 0.21 11.80 22.06 95.54
THD=9.90%
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3 g
E én ! | I ‘ |
1
.50 FIGURE 11. Hardware prototype of PSMLI.
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FIGURE 9. Simulation results of basic PSMLI: (a) 9-levels output voltage, — - A
(b) harmonic spectrum. ) I |
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FIGURE 10. Simulation results of extended PSMLI: (a) 17-levels output
voltage, (b) harmonic spectrum.

harmonic spectrum of the cascaded PSMLI are shown in
Fig. 10(a) and Fig. 10(b) respectively. Having the same
individual voltage level of 10 V, this cascaded module is
able to generate 80 V output. It can be noticed that in
terms of THD, the extended configuration performed much
better than the basic configuration since it produced almost
double amount of voltage level. Therefore, the THD of this
module has effectively fulfilled the IEEE 519 standard. The
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FIGURE 12. Experimental results of the basic 9-level PSMLI.

THD of 9-level PSMLI can be improved by implementing
selective harmonic elimination (SHE) control where the
switching angle of each power switch is individually
optimized [28].

B. EXPERIMENTAL RESULTS
The parameters and the model of the components used to
build the hardware model is shown in Table 4. The hardware
setup is shown in Fig. 11 which include all the power
components.

The experimental results of the 9-level (n = 1) and
17-level (n = 2) symmetrical PSMLI’s voltage waveforms
are presented in Fig. 12 and Fig. 13, subsequently along with
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FIGURE 13. Experimental results of the basic 17-level PSMLI.

HARMOHICS

FIGURE 14. THD results obtained from Fluke 43B for: (a) 9-level PSMLI,
(b) 17-level PSMLI.

the harmonic spectrums in Fig. 14(a) and Fig. 14(b). The
results are obtained with a fundamental frequency of f = 50,
modulation index m = 1, and inductive load of (40 2 —5 mH).
It can be noticed that the basic configuration of PSMLI
has synthesized 9-level voltage with a peak magnitude of
43.04 V. In contrast, the extended PSMLI has produced
17-level voltage with a magnitude of 81.16 V. In terms of
THD the extended module performed better than the basic
module since it produced higher voltage level. Thus, the
THD of 17-level module has met the IEEE 519 2014 voltage
harmonics standard (i.e., THD < 8%). Moreover, the voltage
and current waveform of the asymmetrical 33-level PSMLI
is shown in Fig. 15. It is clearly observable that the voltage
waveform has become nearly identical to a pure sine wave.
Thus, the THD in this case has further decreased to only
2.58% while the voltage has increased to 162.59 V. Finally,
it can be seen from Fig. 16 that the capacitor voltages for both
capacitors are balanced and stable while the prototype of the
PSMLI module is operating at nominal condition. It further
indicates that the hardware model of the proposed PSMLI is
performing without any major issue.

The performance of the PSMLI is tested in 3 different
transient conditions and results are shown in Fig. 17. In 1st
case, the input DC voltage is altered from 10 Vto 5 V. As a
result, it is noticeable from Fig. 17(a) that the output voltage
is decreased from 43.04 V to 20.22 V while the current
decreased from 1.34 A to 0.65 A. Nevertheless, the MLI is
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FIGURE 15. Experimental results of the asymmetrical 33-level PSMLI.
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FIGURE 16. Balanced capacitor voltages of the PSMLI.

working without any issue. In 2nd case, the modulation index
is varied from m = 1 — 0.5 — 0.3 and thus, the voltage
is decreased from 9-level — 5-level — 3-level as shown in
Fig. 17(b). Although, the MLI is performing properly the
THD of the output voltage increased from 9.7% — 18.2%
— 29.1% since the MLI’s voltage level is reduced. In the 3rd
and final case, the load is varied gradually from 100 €2 to
160 2. Thus, the current is gradually decreased as illustrated
in Fig. 17(c).

The capacitor voltages of the PSMLI are also observed
under the transient conditions mentioned above. It can be
observed from Fig. 18(a) that during the voltage fluctuations
the capacitor voltages are also reduced to 5 V as the total
voltage become 20.22 V. Nevertheless, it can be seen that
the proposed PSMLI is functioning without any issues and
the capacitor voltages are balanced even after the voltage
fluctuation has occurred. During the change in modulation
index and load from Fig. 18(b) and Fig. 18(c) respectively, it
is noticeable that there is no change in the capacitor voltages.
Therefore, it can be stated that the change in modulation
index or the load does not have any impact on the capacitors’
performance.

Finally, the performance of PSMLI is investigated under
non-linear load conditions where the output of the MLI is
connected with a single-phase bridge rectifier and inductive
load (40 2 — 5 mH). The 9-level output voltage can be
observed to be completely similar to the previous case studies
as shown in Fig. 19. However, the current of the PSMLI has
slight distortions which is due to the fact the non-linear load
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FIGURE 17. Performance evaluation of the PSMLI under different transient conditions: (a) voltage fluctuations, (b) variation in modulation index, (c) load
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FIGURE 18. Performance evaluation of the capacitor voltages of PSMLI under different transient conditions: (a) voltage fluctuations, (b) variation in
modulation index, (c) load transient.

5 Agilent electric components since it is a self-balanced MLI i.e.,

Plo chatige in veltage waveforny oo it does not require any additional power components to

1, B0 Sats balance the capacitor voltages. PSMLI’s another advantage

gl i Chanals” 3| is its ability to generate negative voltage without the need

1 of an additional H-bridge unit. This has also contributed to

M . its lower TSV and structural simplicity. The PSMLI unit is

PN S L -“"‘-‘“‘ﬁ-_lm,_,: simulated and experimentally assessed, and it shows good
R Tt results on both occasions. There is a high similarity between

AL S SRl the simulated and experimental results which validates its

1.07A

Slight distortions

accurate operation. A high efficiency of 95.54% is obtained
which is better than most of the recently proposed MLIs as
demonstrated in the comparative analysis section. PSMLI
also achieved a low THD of 6.4% and 2.58% for 17-
) o o level module and 33-level module, respectively and have
has induced current harmonics into the system. This issue can successfully followed IEEE 519 2014 standard. The results
be effectively dealt with custom power devices such as shunt also showed that the capacitor voltages of PSMLI are
active power filters [3], [4]. balanced with a very low voltage ripple of 3.23 V. These

results indicate the industrial suitability of the proposed
VI. CONCLUSION module.
This manuscript presents a novel multilevel inverter unit
that employs 2 DC sources and 2 switched capacitors to REFERENCES
produce 9 voltage levels. The PSMLI is built utilizing a
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